Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(19): 4708-4716, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38654609

RESUMO

Atherosclerosis (AS) is a significant contributor to cardiovascular events. Advanced AS is particularly concerning, as it leads to the formation of high-risk vulnerable plaques. Current treatments for AS focus on antithrombotic and lipid-lowering interventions, which are effective in treating early-stage AS. Recent studies have shown that macrophage polarization plays a crucial role in the development of AS. This study presents a new biomedical application of natural tannic acid as an anti-inflammatory nanoplatform for advanced AS. Tannic acid-poloxamer nanoparticles (TPNP) are fabricated through self-assembly of tannic acid (TA) and poloxamer. TPNP has the potential to provide effective treatment for advanced AS. According to in vitro studies, TPNP has been found to suppress the inflammatory response in lipopolysaccharide-stimulated macrophages by scavenging reactive oxygen species (ROS), downregulating the expression levels of inflammatory cytokines (such as interleukin-10 and tumor necrosis factor-α) and regulating polarization of macrophages. In vivo studies further reveal that TPNP can retard the development of advanced atherosclerotic plaques by reducing ROS production and promoting M2 macrophage polarization in the aorta of ApoE-/- mice. Overall, these findings suggest that TPNP could be used to develop natural multifunctional nanoplatforms for molecular therapy of AS and other inflammation-related diseases.


Assuntos
Aterosclerose , Macrófagos , Nanopartículas , Poloxâmero , Taninos , Taninos/química , Taninos/farmacologia , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Nanopartículas/química , Poloxâmero/química , Poloxâmero/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Tamanho da Partícula , Propriedades de Superfície , Masculino
2.
J Thorac Imaging ; 36(5): 326-332, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34269751

RESUMO

PURPOSE: Nephrotic syndrome (NS) is highly associated with an increased risk of pulmonary embolism (PE) in children and young adults. However, few studies have specified the risk factors of PE in children and young adults with NS. We sought to determine the prevalence and associated factors of PE confirmed with computed tomography pulmonary angiography in Chinese children and young adults with NS. METHODS: Data from 444 children and young adults with NS who had computed tomography pulmonary angiography from December 2010 to October 2018 were retrospectively analyzed. The prevalence of PE was estimated for different age, sex, and histopathologic types of NS. Multivariable logistic regression was used to identify independent risk factors of PE in children and young adults with NS. Models incorporating the independent risk factors were evaluated using receiver operation characteristic curves. Area under the curve was used to determine the best-performing prognosticators for predicting PE. RESULTS: There were 444 patients in the study cohort (310 male patients, 134 female patients; mean age 19±3 y; range: 6 to 25 y). PE was present in 24.8% of the participants (110 of 444, 18.2% female). Children and young adult NS patients with PE tend to be older, male, to have a previous thromboembolism history and smoking, and have a higher level of proteinuria, D-dimer, and serum albumin (P<0.05 for all). Children and young adults with membranous nephropathy are likely to have a higher incidence of PE than those with other types of nephropathy. Membranous nephropathy and proteinuria were significant predictors of PE in children and young adults with NS (P<0.05 for all). The area under the curves of each model for the presence of PE in children and young adults with NS based on biochemical parameters and clinical information (model 1), adjusted for proteinuria (model 2), and adjusted for membranous nephropathy (model 3) were 0.578, 0.657, and 0.709, respectively. Compared with model 1, model 2, and model 3 showed statistically significant differences (model 1 vs. model 2, P=0.0336; model 1 vs. model 3, P=0.0268). There was no statistically significant difference between model 2 and model 3 (P=0.2947). CONCLUSION: This study identified membranous nephropathy and proteinuria as independent associated factors of PE in children and young adults with NS, which can be noted as a risk factor to guide clinician management in this population.


Assuntos
Síndrome Nefrótica , Embolia Pulmonar , Adolescente , Adulto , Criança , China , Estudos de Coortes , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio , Humanos , Masculino , Síndrome Nefrótica/complicações , Síndrome Nefrótica/epidemiologia , Prevalência , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
3.
Biomaterials ; 232: 119677, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31865193

RESUMO

Conventional radiotherapy has a pivotal role in the treatment of glioblastoma; nevertheless, its clinical utility has been limited by radiation resistance. There is emerging evidence that upregulated heat shock protein A5 (HSPA5) in cancer cells maintains or restores the homeostasis of a cellular microenvironment and results in cancer resistance in various treatments. Therefore, we describe a bioresponsive nanoplatform that can deliver a HSPA5 inhibitor (pifithrin-µ, PES) and radiosensitizer (gold nanosphere, AuNS), to expand the synergistic photothermal therapy and radiotherapy, as well as to monitor the progression of cancer therapy using computer tomography/magnetic resonance imaging. The nanoplatform (PES-Au@PDA, 63.3 ± 3.1 nm) comprises AuNS coated with the photothermal conversion agent polydopamine (PDA) for enhanced radiotherapy and photothermal therapy, as well as PES (loading efficiency of PES approximately 40%), a small molecular inhibitor against HSPA5 to amplify the pro-apoptotic unfolded protein response (UPR). The reported nanoplatform enables hyperthermia-responsive release of PES. Results from in vitro and in vivo studies demonstrate that PES-Au@PDA can specially activate pro-apoptotic UPR cascades, leading to remarkably improved radiotherapy and photothermal therapy efficiencies. Considered together, a versatile theranostic nanosystem is reported for promoting the synergistic radiophotothermal therapy by selectively activating pro-apoptotic UPR cascade pathways.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Hipertermia Induzida , Nanopartículas Metálicas , Neoplasias Encefálicas/tratamento farmacológico , Chaperona BiP do Retículo Endoplasmático , Glioblastoma/tratamento farmacológico , Ouro , Humanos , Fototerapia , Sulfonamidas , Microambiente Tumoral , Resposta a Proteínas não Dobradas
4.
Drug Des Devel Ther ; 13: 2135-2144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456633

RESUMO

Objective: To investigate the exact role of GRP78 in artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Methods: Artesunate-induced KRAS mutant human pancreatic cancer cells (AsPC-1 and PaTU8988) ferroptosis was confirmed by fluorescent staining experiments and CCK8. Western blot and short-hairpin RNA-based knockdown assays were conducted to detect GRP78 activity and its role in artesunate-induced ferroptosis. Results: Artesunate induced AsPC-1 and PaTU8988 cell death in ferroptosis manner, rather than necrosis or apoptosis. In addition, artesunate increased the mRNA and protein levels of GRP78 in a concentration-dependent manner in AsPC-1 and PaTU8988 cells. Knockdown GRP78 enhanced artesunate-induced ferroptosis of pancreatic cancer cells in vitro and in vivo. Conclusion: Combining artesunate with GRP78 inhibition may be a novel maneuver for effective killing of KRAS mutant pancreatic ductal adenocarcinoma cells.


Assuntos
Artesunato/antagonistas & inibidores , Ferroptose/efeitos dos fármacos , Proteínas de Choque Térmico/antagonistas & inibidores , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Animais , Artesunato/farmacologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA